COL728 Major Exam
Compiler Design
Sem Il, 2017-18
Answer all 4 questions Max. Marks: 30

1. Operational semantics: Consider the following statement in a C-like language:

/ly == 1 and x == 2 at this point
z=(y=x-y)+(x=x+y)

This is a valid C statement

a. If before this statement is executed, x == 2 and y == 1, then what according to you is
the final value of z? [1]

There are two possible answers and both evaluate to 4. Either the first expression may be
evaluated first or the second expression may be evaluated first. Either would be correct
semantics. Recall that C leaves the order of evaluation of operands “unspecified”. But you
were supposed to pick one order and evaluate it in that order.

For example, y = x-y is executed first, then x = x+y and at last z = y+x

Full marks for correct answer, none for wrong.

b. Write the formal operational semantics rules that you applied to arrive at your answer.
Your rules should be correct (sound) and complete for evaluating this statement, and should
agree with your answer in part a. With each rule, write a few sentences to indicate which

rule gets invoked for evaluating which part(s) of the statement above. [7]

E,S =>e,v,, S,
E.S,=>e,v,, S,

E,S, =>e,te, : v,+V,,S,

Above semantic rule is applied to evaluate x+y and (y=x-y)+(x=x+y)
ES =>e,v,, S,

E.S;=>e,v,, S,

E,S,=>e;-e,:v,+v,,S;
Above semantic rule is applied to evaluate x-y

E,S =>e, S,
Elid] =1,
S, =S,V /1

E,S=>id<-v, S2
Above semantic rule is applied to evaluate assignment to y, x and then to z.
Each rule is of 1.5 marks and 2.5 marks for explanation.



2. Register allocation through graph coloring : Explain what is optimistic coloring using an
example program. Write an example program (different from the one that was used in
class). Draw its register interference graph. And colour it using the optimistic coloring
algorithm. Your example should involve at least one case where the “optimistic” nature of
the coloring algorithm yields an advantage. Clearly mention at which step did the optimistic
nature of the coloring algorithm help obtain a more efficient solution. [6]

Example Program with its liveness analysis is :

-—--a
if(@a >=0)
{
-—-a
b=a
-—--—-a,b
d=a’+b
--d,b
d=d*b
-—-d
}
else
{
-—-a
c= -a
----C,a
d=a’+c
----d,c
d=d*c
-—-d
}

Register Interference graph(RIG) for the above program is:

a-b
a-c
b-d
c-d

The register allocation problem can be considered as a graph-coloring problem of its RIG. A
coloring of a graph is an assignment of colors to nodes, such that nodes connected by an
edge have different colors. A graph is k-colorable if it has a coloring with k colors.

Let’s say, we want to color our example RIG with 2 colors.

Optimistic Coloring Algorithm:

Step 1: Pick a node with fewer than 2 neighbors.



In our example RIG, all the 4 nodes have 2 neighbors. In this case, pick a node as a
candidate for spilling. This temporary variable will "live" in memory.

Remove the picked node and all its edges from the RIG. Let’s say, we pick node “a” for
spilling.

Step 2 : After removing a, the remaining graph (b-d, c-d) can be colored with 2 colors.
b -- red

c--red

d -- black

Step 3 : In optimistic coloring, we now try to add back spilled node and it may be possible
that after adding it, the graph is still k colorable.

In our example, since both the neighbors of a, i.e. b,c are red and after adding a, the graph
is still 2 colorable, thus providing a more efficient solution.

a -- black
b -- red
c --red
d -- black

Identifying a correct example and making its register inference graph : 2 marks
Running graph colouring on it : 2 marks

Explanation of optimistic coloring and its role in register allocation : 2 marks

3 marks will be deducted if example does not show benefit of optimistic nature of
coloring

No marks if class example is used.



3. Dataflow analysis : copy propagation

Recall that copy propagation refers to a transformation pass where occurrences of targets of
copy-assignments are replaced with their RHS values and the copy-assignment is
eliminated. E.g.,

X=y
z=x+3
W=y+z

Will be replaced to:

z=y+3
w=y+z

In this example: x has been replaced with y through copy-propagation.

Specify an algorithm that implements global copy-propagation. Your algorithm should involve
a dataflow analysis followed by a transformation that makes use of the results of the
dataflow analysis. Clearly specify the values that you compute using copy propagation.
Specify the direction, meet operator, and the transfer functions. If your transfer functions
need to know the Use/Kill sets for an instruction, please specify them clearly with examples.
Also, mention the boundary conditions. Finally, describe the transformation pass that will
use the results of this analysis. [6]

For implementing Copy-propagation we will run data flow analysis passes until fixpoint on
the instructions with parameters defined below. Our aim is to remove unnecessary
assignment instructions of form x=y where x and y are variables by replacing x with y on
subsequent uses of x if this is only assignment instruction to x before that use.

[0.5]Direction : Forward
[0.5]Meet Operator : Intersection
Ordering / Lattice :
Complete domain of form (x=y)

Empty

[0.5]Values Computed : Available substitutions of the form x=y means substitute all
occurrences of x with y. (where x and y are variables)

[1]Transfer functions :



For any statement s,
In[S]] = N(Out[P]) for all j such that P, is a predecessor of S,
Out[S] = Use U (In[S] - Kill)

[0.5]Use : Any available substitution of the form x=y (where x and y are variables) present in
the instruction will add substitution x=y to available substitutions.

[0.5]Kill : Any statement of the form x=e where e is some expression will kill all substitutions
from the available substitutions set in which x is present in LHS or RHS

E.g.

instruction is x = y then its use set is {x=y}

And kill set will be ay expression having x in LHS or RHS e.g. {y=x, x=z}

[0.5]Boundary Conditions : At entry instructions initialize with empty set.
Initialization: Initialise all instructions with set x=y for all possible variables x and y

[1]Transformation :

After reaching a fixpoint in computing set of available substitutions before each instruction,
we can start doing substitutions. We can define a global order on the variables, such that
the variables appearing later in that order can be substituted with the variables earlier in that
order.

At any instruction that uses y, and where there exists a substituting condition x=y (or y=x)
where x occurs earlier in the order than y (i.e., x <y), we can replace y with x. We can keep
doing so, until a fixpoint is reached. Notice that it is possible that after replacing y with x, x is
later replaced by w.

After this we can run liveness analysis on variables and dead code elimination to remove all
assignment instructions which are useless

[1]You can run this algorithm on any program using a block diagram or a list of instructions
or describe how above all these parameters work together in dataflow algorithm.

X=y Available set = {}
z=x+3 {(x=y)}

X = X+2 {(x=y)}

y=z {}

W=y +X {(y=2)}

After substitution pass:

X=y

z=y+3

X=y+2

y=z

W=Z+X

After dead code removal and liveness analysis
z=y+3

X=y+2



W=Zz+X
Marks for each part is specified.
4. Lazy code motion

a. Apply the lazy code motion algorithm described in class to the program above. Show
the result of the optimization --- it is not necessary to show any intermediate steps.
(Introduce new basic blocks as necessary). [6]

Answer for this program with all critical edges removed is shown below:

Expression a+b is needed in : IN : block 1 to 16 OUT : block 1 to 15



Expression a+c is needed in : IN : 4,5,9,12,13 OuUT:4,9,11,12
Expression a+fis needed in: IN: 17 OUT : 16

Expression a+b is missing in : IN : 1

Expression a+c is missingin: IN : 1,2,3,4,8,9,10,11,12 OuUT :1,2,3,8,10,11

Expression a+fis missingin: IN:1to 17 OUT :1to 16
Expression a+b is postponed in : IN: 2,10 OouUT:1,2,10
Expression a+c is postponed in: IN: 5,13 OuUT : 4,9, 12

Expression a+f is postponed in :

Full marks for correct answer. Partial marking if result is correct according to some
passes.



b. Are there redundant operations remaining after the optimization? If not, explain why not.
If yes, explain why redundant operations were left even after applying the transformation. [4]

Yes there are some redundancies still left e.g. loop 3-4-5-7-3 will calculate a+c again and
again though it is not needed. This is because of edge 11-9-5 which also joins this loop and
this path kills expression ¢ and so a+c must be recalculated.

This redundancy can also be reduced if one of the two paths among 3-4-5 or 11-12-13 is
replicated, but that is not supported by the lazy-code motion algorithm.

2 marks for identifying redundancies. 2 for explanation.



